1. Identification of Product and Company

Chemical/Trade name: Sealed Lead Acid Battery
Chemical Family / Classification: Electric Storage Battery.
Manufacturer/Supplier: CSB Battery Co., LTD / CSB Battery Europe B.V.
Address: Keurmeesterstraat 28 - 30, 2984BA Ridderkerk, The Netherlands.
Phone: Europe: +31 (0) 180-418-140
Asia: +886-2-8751-5000
America: +1-817-244-7777

2. Composition and Information on the main Ingredients

<table>
<thead>
<tr>
<th>CAS no.</th>
<th>Description</th>
<th>Content [% of weight]</th>
<th>Hazard symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>7439-92-1</td>
<td>Lead Grid (metallic lead, lead alloys with possible traces of additives)</td>
<td>~57</td>
<td>T (2)</td>
</tr>
<tr>
<td>1309-60-0</td>
<td>Active Mass (Battery Oxide, inorganic lead compounds)</td>
<td>~ 22</td>
<td>T (2)</td>
</tr>
<tr>
<td>7664-93-9</td>
<td>Electrolyte 4) (diluted sulphuric acid with additives)</td>
<td>~ 14</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Plastic Container / Plastic Parts 5)</td>
<td>~ 7</td>
<td></td>
</tr>
</tbody>
</table>

1) contents may vary due to performance data of the Battery
2) As result of the harm to the unborn children Lead compounds are classified as toxic for reproduction, Category 1. As this category is not described with a specific hazard symbol, Lead compounds have to be labelled with the „skull“ symbol. Lead compounds are not classified „toxic“.
3) see chapter 12 – Ecological Information
4) Density of the electrolyte varies in accordance to the state of charge
5) Composition of the plastic may vary due to different customer requirements

3. Hazards Identification

No hazards occur during the normal operation of a Lead Acid Battery as it is described in the instructions for use that are provided with the Battery. Lead acid Batteries have three significant characteristics:

- They contain an electrolyte which contains diluted sulphuric acid. Sulphuric acid may cause severe chemical burns.
- During the charging process or during operation they might develop hydrogen gas and oxygen, which under certain circumstances may result in an explosive mixture.
- They can contain a considerable amount of energy, which may be a source of high electrical current and a severe electrical shock in the event of a short circuit.

The Batteries have to be marked with the symbols listed under item 15.

4. First Aid measures

This information is of relevance only if the Battery is broken and this results in a direct contact with the ingredients.
4.1 General
Electrolyte (diluted sulphuric acid): sulphuric acid acts corrosively and damages skin
Lead compounds: lead compounds are classified as toxic for reproduction (if swallowed)

4.2 Electrolyte (Sulphuric acid)
after skin contact: rinse with water, remove and wash wetted clothing
after inhalation of acid mist: inhale fresh air, seek advice of a medical doctor
after contact with the eyes: rinse under running water for several minutes, seek advice of a medical doctor
after swallowing: drink lot of water immediately, swallow activated carbon, do not induce vomiting, seek advice of a medical doctor

4.3 Lead compounds
after skin contact: clean with water and soap
after inhalation: inhale fresh air, seek advice of a medical doctor
after contact with the eyes: rinse under running water for several minutes, seek advice of a medical doctor
after swallowing: wash mouth with water, seek advice of a medical doctor

5. Fire fighting measures

Suitable fire extinguishing agents:
CO₂ or dry powder extinguishing agents

Unsuitable fire extinguishing agents:
Water, if the battery voltage is above 120 V

Special protective equipment:
Protective goggles, respiratory protective equipment, acid protective equipment, acid proof clothing in case of larger stationary battery plants or where larger quantities are stored.

6. Measures to be taken in case of accidental release

This information is of relevance only if the battery is broken and the ingredients are released.

In the case of spillage, use a bonding agent, such as sand, to absorb spilt acid; use lime / sodium carbonate for neutralization; Dispose of with due regard to the official local regulations; do not allow penetration into the sewage system, into earth or water bodies.

7. Handling and Storage

Store under roof in cool ambiance charged lead acid batteries do not freeze up to -50°C; Prevent short circuits. Seek agreement with local water authorities in case of larger quantities of batteries to be stored. If batteries have to be stored, it is imperative that the instructions for use are observed.

8. Exposure limits and personal protective equipment

8.1 Lead and Lead compounds
No exposure to lead and lead containing battery paste during normal conditions of use.

8.2 Electrolyte (Sulphuric Acid)
Exposure to sulphuric acid and acid mist might occur during filling and charging.
Threshold value in workplace: occupational exposure limits for sulphuric acid mist are regulated on a national basis.
9. Physical and Chemical properties

<table>
<thead>
<tr>
<th></th>
<th>Lead and Lead compounds</th>
<th>Electrolyte (diluted sulphuric acid, 30 to 38.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form</td>
<td>solid</td>
<td>liquid</td>
</tr>
<tr>
<td>color</td>
<td>grey</td>
<td>colorless</td>
</tr>
<tr>
<td>odor</td>
<td>odorless</td>
<td>odorless</td>
</tr>
<tr>
<td>Safety related data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solidification point</td>
<td>327 °C [melting point]</td>
<td>-35 to -60 °C</td>
</tr>
<tr>
<td>boiling point</td>
<td>1740 °C</td>
<td>approx. 108 to 114 °C</td>
</tr>
<tr>
<td>solubility in water</td>
<td>very low (0.15 mg/l)</td>
<td>complete</td>
</tr>
<tr>
<td>density (20°C)</td>
<td>11.35 g/cm³</td>
<td>1.2 to 1.3 g/cm³</td>
</tr>
<tr>
<td>vapor pressure (20°C)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Lead and Lead compounds used in Lead Acid batteries are poorly soluble in water; Lead can be dissolved in an acidic or alkaline environment only.

10. Stability and Reactivity (sulphuric acid, 30 ~ 38.5 %)

- Corrosive, nonflammable liquid
- Thermal decomposition at 338°C.
- Destroys organic materials such as cardboard, wood, textiles.
- Reacts with metals, producing hydrogen
- Vigorous reactions on contact with sodium hydroxide and alkalis.

11. Toxicological Information

This information does not apply to the finished product “lead acid battery”. This information only applies to its compounds in case of a broken product. Different exposure limits exist on a national level.

11.1 Electrolyte (diluted sulphuric acid):
Sulphuric Acid is intensely corrosive to skin and mucous membranes; The inhalation of mists may cause damage to the respiratory tract.

Acute toxicity data:

- LD50 (oral, rat) = 2,140 mg/kg
- LC50 (inhalation, rat) = 510 mg/m³/2h

11.2 Lead and Lead compounds

Lead and its compounds used in a Lead Acid Battery may cause damage to the blood, nerves and kidneys when ingested. The lead contained in the active material is classified as toxic for reproduction.

12. Ecological Information

This information is of relevance if the battery is broken and the ingredients are released to the environment.

12.1 Electrolyte (diluted sulphuric acid)

In order to avoid damage to the sewage system, the acid has to be neutralized by means of time or sodium carbonate before disposal. Ecological damage is possible by change of pH. The electrolyte solution reacts with water and organic substances, causing damage to flora and fauna. The electrolyte may also contain soluble components of lead that can be toxic to aquatic environments.

12.2 Lead and Lead compounds

Chemical and physical treatment is required for the elimination from water. Waste water containing lead must not be disposed of in an untreated condition. The former classification of Lead compounds as toxic for the aquatic environment R50/53 had been triggered from test results generated in the 80's for soluble Lead compounds (Lead Acetate). The hardly soluble Lead compounds such as Battery Lead Oxide were not tested at this time. Tests on Battery Lead Oxide were carried out in 2001 and 2005. The respective test results conclude that Battery Lead Oxide is not toxic for the environment, neither R50 nor R50/53 nor R51/53. From this it follows that the general classification for Lead compounds (R50/53) does not apply to Battery Lead Oxide. As the result of this the Risk Phrase R52/53 (Harmful to aquatic organisms, may cause longterm adverse effects in the aquatic environment) applies to Battery Lead Oxide.

Effects of Battery Lead Oxide in the aquatic environment:

- Toxicity for fish: 96 h LC 50 > 100 mg/l
- Toxicity for daphnia: 48 h EC 50 > 100 mg/l
- Toxicity for alga: 72 h IC 50 > 10 mg/l

The results demonstrate these Battery Lead Oxide compounds in a concentration of 100 mg/l have no adverse effect on fish and daphnia. A concentration of these Battery Lead Oxide of 10 mg/l has no adverse effect on the rate of growth and the biomass. For the classification according to Directive 67/548/EEC the most sensitive adverse effect has to be considered. As a result of the toxicity for alga at > 10 mg/l Battery Lead Oxide has to be classified according to the R-Phrases 52/53 (Harmful to aquatic organisms, may cause long term adverse effects in the aquatic environment).

13. Disposal Considerations

Spent lead acid batteries (EWC 160601) are subject to regulation of the EU Battery Directive and its adoptions into national legislation on the composition and end of life management of batteries.
Spent Lead Acid batteries are recycled in lead refineries (secondary lead smelters). The components of a spent Lead Acid battery are recycled or reprocessed.

At the points of sale, the manufacturers and importers of batteries, respectively the metal dealers take back spent batteries, and render them to the secondary lead smelters for processing.

To simplify the collection and recycling or reprocessing process, spent Lead Acid batteries must not be mixed with other batteries.

By no means may the electrolyte (diluted sulphuric acid) be emptied in an inexpert manner. This process is to be carried out by the processing companies only.

14. Transport Regulation

| Land Transport | • Land Transport (ADR/RID, U.S. DOT)
| | • UN N°: UN2800
| | • Classification ADR/RID: Class 8
| | • Proper Shipping Name: BATTERIES, WET, NO NSPILLABLE electric storage
| | • Packing Group ADR: not assigned Label required: Corrosive
| | • ADR/RID: New and spent batteries are exempt from all ADR/RID (special provision 598).
| Sea Transport | • UN N°: UN2800
| | • Classification: Class 8
| | • Proper Shipping Name: BATTERIES, WET, NON SPILLABLE electric storage
| | • Packing Group: III
| | • EmS: FA, SB
| | • Label required: Corrosive
| | • If non-spillable batteries meet the Special Provision 238, they are exempted from all IMDG codes provided that the batteries’ terminals are protected against short circuits.
| Air Transport | • UN N°: UN2800
| | • Classification: Class 8
| | • Proper Shipping Name: BATTERIES, WET, NON SPILLABLE electric storage
| | • Packing Group: III
| | • Label required: Corrosive
| | • If non-spillable batteries meet the Special Provision A67, they are exempted from all IATA DGR codes provided that the batteries’ terminals are protected against short circuits.

CSB seal lead-acid batteries are classified as “non-spillable” for the purpose of transportation by DOT, and IATA/ICAO as result of passing the Vibration and Pressure Differential Test described in DOT [49 CFR 173.159 (f)] and IATA/ICAO [Special Provision A67].

CSB seal lead-acid batteries can be safely transported on deck, or under deck stored on either a passenger or cargo vessel as result of passing the Vibration and Pressure Differential Tests as described in the IMDG regulations.

To transport these batteries as “non-spillable” they must be shipped in a condition that would protect them from short-circuits and be securely packaged so as to withstand conditions normal to transportation by a consumer, in or out of a device, they are unregulated thus requiring no additional special handling or packaging.

For all modes of transportation, each battery and outer package is labeled “NON-SPILLABLE” per 49 CFR 173.159 (f). If you repack your batteries either as batteries or as a component of another product you must label the outer package “NON-SPILLABLE” per 49 CFR 173.159 (f).
15. Regulatory Information

In accordance with EU Battery Directive and the respective national legislation, Lead Acid batteries have to be marked by a crossed out dust bin with the chemical symbol for lead shown below, together with the ISO return/recycling symbol.

In addition some of the following hazard symbols described below might apply:

- Corrosive
- Explosive gas mixture
- Read Instructions
- Keep out of reach of children
- No Smoking, no open flames, no sparks.
- Wear Safety Goggles.

Labeling might vary due to application and dimension of the Battery.
16. Other Information

Products such as Batteries are not in the scope of regulation which requires the publication of an EU Safety Data Sheet (91/155/EEC).

The information given above is provided in good faith based on existing knowledge and does not constitute an assurance of safety under all conditions. It is the user’s responsibility to observe all laws and regulations applicable for storage, use, maintenance or disposal of the product. If there are any queries, the supplier should be consulted.

However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.